
CS 388H: Cryptography Fall 2022

Take-Home Final Exam

Due: December 9, 2022 at 11:59pm (Submit on Gradescope) Instructor: David Wu

Instructions. You must typeset your solution in LaTeX using the provided template:

https://www.cs.utexas.edu/~dwu4/courses/fa22/static/homework.tex

You must submit your completed exam via Gradescope (accessible through Canvas).

Collaboration Policy. This is an individual assignment. You are not allowed to collaborate with anyone
on these problems and you are not permitted to search online for solutions to these problems. If you do
consult external sources (these cannot include solutions), you must cite them in your submission.

1 Part I: Conceptual Questions

Problem 1: Conceptual Questions [30 points]. You do not need to provide any justification for any part
of this question, and any justification you write will be ignored. For the multiple choice questions, there
could be multiple answers or zero correct answers. For full credit, you should select all correct responses,
or indicate that there are none.

1. Symmetric cryptography. Let S be a set of constant size (e.g., |S| = 64). Which (if any) of the following
schemes exist?

(a) A semantically secure symmetric encryption scheme with key space S, message space S, and
ciphertext space S.

(b) A CPA-secure symmetric encryption scheme with key space S, message space S, and a ciphertext
space of size 2λ|S|, where λ is a security parameter.

(c) A secure MAC with key space S, message space S, and tag space S.

(d) A secure one-time MAC with key space S, message space S, and tag space S.

2. Padding in CBC. Recall that when encrypting messages in CBC mode, the messages must first be
padded to be a multiple of the block length. Suppose we use a block cipher on an n-bit domain in
randomized CBC mode to build a symmetric encryption scheme. Which (if any) of the following
padding functions can be applied to obtain a correct and CPA-secure cipher? The padding function
pad: {0,1}≤n → {0,1}kn takes in the last block of the message and outputs a string that is exactly k
blocks long for some positive integer k ∈N.

(a) pad(x) =
{

x if |x| = n

x∥1∥0n−|x|−1 otherwise.

(b) pad(x) =
{

x∥1n if |x| = n

x∥1n−|x| otherwise.
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(c) pad(x) =
{

x∥1∥0n−1 if |x| = n

x∥1∥0n−|x|−1 otherwise.

(d) pad(x) =
{

x∥1∥r1 if |x| = n

x∥1∥r2 otherwise,
where r1

R←− {0,1}n−1 and r2
R←− {0,1}n−|x|−1.

3. Authenticated encryption. Suppose (Encrypt,Decrypt) is an authenticated encryption scheme with

key-space {0,1}λ, message space {0,1}λ, and ciphertext space {0,1}n . In the following, let k
R←− {0,1}λ

and let ct←Encrypt(k,0λ). Which (if any) of the following properties must be true?

(a) ct is computationally indistinguishable from a uniform random string in {0,1}n .

(b) ct is computationally indistinguishable from Encrypt(k,1λ).

(c) ct is computationally indistinguishable from Encrypt(k,r ) where r
R←− {0,1}λ.

(d) ct is computationally indistinguishable from Encrypt(k,k).

4. The DDH assumption. Let G be a group of prime order p and generator g . Suppose the DDH
assumption holds in G. In the following, let n = poly(λ) be an arbitrary polynomial in the security
parameter λ. Which (if any) of the following problems are hard in G (under DDH)?

(a) The CDH problem in G.

(b) Sample a,b,c,r
R←−Zp . The problem is to distinguish (g a , g b , g c , g abc ) from (g a , g b , g c , g r ).

(c) Sample a
R←− Zp . Then, for each i ∈ [n], sample bi ,ri

R←− Zp . The problem is to distinguish{
(g a , g bi , g abi )

}
i∈[n] from

{
(g a , g bi , g ri )

}
i∈[n].

(d) For each i ∈ [n], sample ai ,bi ,ri
R←−Zp . The problem is to distinguish

{
(g ai , g bi , g ai bi )

}
i∈[n] from{

(g ai , g bi , g ri )
}

i∈[n].

5. Identification protocols. For each of the following identification protocols, indicate whether it is (i)
secure against direct attacks; (ii) secure against direct attacks and passive eavesdropping attacks; (iii)
secure against direct attacks, passive eavesdropping attacks, and active attacks; or (iv) none of the
above. Choose one option for each setting.

(a) Both the client and the server have a shared MAC key k (for a secure MAC). In the identification

protocol, the server samples a random challenge x
R←− {0,1}λ and sends it to the client. The client

responds with a MAC σ on x (using key k). The server accepts if σ is a valid MAC on x (under key
k).

(b) The client has a secret key for a semantically secure public-key encryption scheme while the
server has the public key. In the identification protocol, the server samples a random challenge

x
R←− {0,1}λ and encrypts it under the client’s public key. The client decrypts the ciphertext to

obtain a message x ′ and sends x ′ to the server. The server accepts if x ′ = x.

(c) The client has a random value x
R←− {0,1}λ and the server has y = f (x), where f is a one-way

function. In the identification protocol, the client sends a NIZK proof of knowledge of x where
f (x) = y , and the server accepts if the proof is valid.



(d) Let G be a group of prime order p with generator g and where the discrete log assumption holds.

The client has a secret exponent x
R←−Zp and the server has the value h = g x . In the identification

protocol, the client sends a NIZK proof (that is sound but not a proof of knowledge) that there
exists x ∈Zp such that h = g x . The server accepts if the proof is valid.

6. Zero-knowledge. Consider the zero-knowledge proof for graph 3-coloring from lecture that provides
negligible soundness error (i.e., λ repetitions of the basic protocol). In the following, let G be a graph
and let E be the set of edges in G . Let E ′ ⊂ E be a subset containing exactly 3 edges (i.e., |E ′| = 3). Both
the prover and the verifier know E ′. For each of the modifications described below, state the properties
(if any) that still hold: (i) soundness, (ii) zero-knowledge.

(a) The prover applies the same random permutation of colors on each repetition of the protocol.

(b) Instead of sampling e
R←− E in each repetition of the protocol, the verifier now samples e

R←− E ′.

(c) Instead of sampling e
R←− E in each repetition of the protocol, the verifier now samples e

R←− E \ E ′.

(d) Instead of sampling e
R←− E in each repetition of the protocol, the verifier now samples e

R←− E ′ with

probability 99/100 and e
R←− E \ E ′ with probability 1/100.

Note that A \ B denotes the set of elements in A but not in B .

2 Part II: Cryptographic Primitives and Constructions

Instructions. Answer any two of the three problems in this section. If you answer more than two
problems, only the first two you answer will be graded.

Problem 2: Cryptographic Combiners, Redux! [25 points]. Recall from Homework 2 that a crypto-
graphic combiner is an object that takes multiple candidate instantiations of a cryptographic primitive
and outputs a secure instantiation as long as one of the inputs is secure. In this problem, we will construct
cryptographic combiners for several standard cryptographic primitives.

(a) Let f1 : X →Y and f2 : X →Y be efficiently-computable functions. Suppose that either f1 or f2 is
one-way, but you do not know which. Use f1 and f2 to construct a one-way function. Prove the
one-wayness of your construction (assuming either f1 or f2 is one-way). You are free to choose the
domain and range of your one-way function.

(b) Let (Setup1,Encrypt1,Decrypt1) and (Setup2,Encrypt2,Decrypt2) be two candidate public-key en-
cryption schemes on a message space {0,1}n . Suppose the ciphertexts in both schemes are ℓ-bits
long. Both of these schemes are correct, and exactly one of these two schemes is semantically secure,
but you do not know which. Use these two public-key encryption schemes to construct a new public-
key encryption scheme that is semantically secure as long as either one of the underlying schemes is
secure and whose ciphertexts have length at most 2ℓ. Prove the security of your construction. (You
should assume that ℓ≫ n).

(c) Is your construction from Part (b) a combiner for CCA-security (assuming one of the underlying
public-key encryption schemes is CCA-secure)? Give a brief and informal explanation (i.e., a proof
sketch or an attack sketch).



Problem 3: RSA-FDH Signatures [25 points]. Recall the RSA-FDH signature scheme from class:

• The verification key vk= (N ,e) consists of an RSA modulus N = pq and a public exponent e. The
signing key is a secret exponent sk= d , where ed = 1 mod ϕ(N ). Here the bit-length of the modulus
N is determined as a function of the security parameter λ (i.e., log N = poly(λ)).

• The signature on a message m ∈ {0,1}ℓ is σ = H(m)d mod N , where H : {0,1}ℓ → Z∗
N is a hash

function (modeled as a random oracle).

• To verify a signature σ on a message m, the verifier checks that σe = H(m) mod N .

We showed in class that if we model H as a random oracle, then for every efficient adversary A for the
signature scheme, there exists an adversary B for the RSA assumption such that

SigAdv[A] ≤Q ·RSAAdv[B]+negl(λ),

where Q is a bound on the number of random oracle queries algorithm A makes, SigAdv[A] is the
advantage of A in the signature security game and RSAAdv[B] is the advantage of B in breaking the RSA
assumption. This means that an adversary that breaks the signature scheme with advantage ε would only
break the RSA assumption with advantage roughly ε/Q. In this problem, consider the following variant of
RSA-FDH signatures:

• The signing and verification keys are exactly the same as before.

• To sign a message m ∈ {0,1}ℓ, the signer samples b
R←− {0,1} and computes σ′ ← H(m∥b)d mod N

where H : {0,1}ℓ+1 →Z∗
N is modeled as a random oracle. The signature is σ= (b,σ′).

• To verify a signature σ= (b,σ′), the verifier checks that (σ′)e = H(m∥b).

(a) Show that if we model H as a random oracle, then for every efficient adversary A for the signature
scheme that only makes signing queries on distinct messages, there exists an efficient adversary B
for the RSA assumption such that

SigAdv[A] ≤ 2 ·RSAAdv[B]+negl(λ). (1)

Notably, an adversary that breaks the signature scheme with advantage ε can now break the RSA
assumption with advantage roughly ε/2.

(b) In one sentence, state how you would modify the above signing algorithm so security holds even
against adversaries that are allowed to query for multiple signatures on the same message in the
signature security game. You do not need to formally prove the security of your modification. It
should still be the case that an advantage relation similar to Eq. (1) holds for your modified scheme
(i.e., there is no dependence on the number of queries Q).

Problem 4: Commitments from Discrete Log [25 points]. Recall that a commitment scheme allows a
user to commit to an input x to obtain a commitment c , and later on, provide an opening π to the value x.
The commitment scheme should satisfy (1) hiding which says that no efficient adversary can distinguish
a commitment to x0 from a commitment to x1; and (2) binding which says that no efficient adversary
can produce two valid openings π0 and π1 for a commitment σ to messages x0 ̸= x1, respectively. In this
problem, we consider a generalization where the message space is a vector of messages. The construction
operates as follows:



• LetGbe a group of prime order p with generator g . We will show how to commit to vectors inZn
p . The

setup algorithm samples h1, . . . ,hn
R←−G and outputs the common reference string σ= (g ,h1, . . . ,hn).

• To commit to a vector x = (x1, . . . , xn) ∈Zn
p , sample a random r

R←−Zp and output the commitment
c = g r hx1

1 · · ·hxn
n . The opening is the tuple π= (r, x1, . . . , xn).

• An opening π = (r, x1, . . . , xn) is a valid opening to a vector x = (x1, . . . , xn) for commitment c if
c = g r hx1

1 · · ·hxn
n .

(a) Show that this commitment scheme satisfies hiding. Note that this property holds even against
computationally unbounded adversaries.

(b) Show that if the discrete log assumption holds in G, then this commitment scheme is binding.

(c) In the above scheme, verifying the opening requires revealing the entire vector x. Suppose instead we
wanted to locally open the commitment at a single coordinate xi without revealing x j for j ̸= i . One
way to do this is to use a zero-knowledge proof. Namely, to open a commitment c at index i to value
xi , the user provides a zero-knowledge proof of knowledge of exponents (r, x1, . . . , xi−1, xi+1, . . . , xn)
such that

c

hxi

i

= g r hx1
1 · · ·hxi−1

i−1 hxi+1

i+1 · · ·hxn
n .

This relation can be shown via a generalization of Schnorr’s protocol. To simplify this problem, we
will just focus on the case where n = 2. In this case, the statement can be expressed as (g ,c,h) and
the goal is to prove knowledge of (r, x) such that c = g r hx . Show how to adapt Schnorr’s protocol to
obtain a Σ-protocol for this relation. Prove that your protocol satisfies special soundness and write
down the HVZK simulator (no need to analyze the distribution for HVZK). You do not need to prove
or analyze any other properties.

Optional Feedback. If you have any suggestions for improving future iterations of the course, please feel
free to share your thoughts here!
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